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Abstract—The growing interest on RES gives traditional power
systems an opportunity to evolve towards more sustainable and
environmental entities, however the viability of RES would induce
stability and reliability issues in power systems. In this paper, a
DC optimal power flow (OPF) algorithm considering worst-case
scenarios is proposed. It accounts for uncertainties brought by
loads and renewable energy sources (RES), while in the meantime
the highest system reliability level can be achieved. By assigning
selected values with largest probabilities to random variables,
the probabilistic OPF formulation is converted into a set of
deterministic OPF problems in which the additional auxiliary
constraints are implemented to represent the uncertain influ-
ences. The proposed OPF with worst-case scenarios is applied
into an IEEE 14-bus and 57-bus benchmark power system. The
results in the simulation along with other OPF techniques shows
the validity and robustness of the algorithm.

Index Terms—Optimal power flow (OPF); renewable energy
sources (RES); reliability; optimization.

I. INTRODUCTION

In recent years, the integration of renewable energy sources
(RES) provides a sustainable and environmental solution to
reduce fossil fuel dependency and carbon emission. However,
the disadvantages of large-scale power systems have been
progressively revealed, that stability and reliability issues
have gradually become public concerns due to long-distance
electricity transmission and intermittent nature of RES. Op-
timal Power Flow (OPF) is considered to be a useful tool
to determine the most cost-efficient operation strategy for
power systems. Several OPF studies have been conducted
with respect to system design and planning [1], operation [2],
management [3], [4] and power flow algorithms [5]–[8]. In the
early years, due to computational limits and lack of techniques,
most OPF studies were based on deterministic models which
may be unable to accurately present the stochastic nature of
generation outputs and random loads. In addition, the imple-
mentation of distributed generation brings more uncertainties
into power systems. Therefore, deterministic OPF analysis can
no longer present the variability of the system accurately, and
the probabilistic OPF has been developed to deal with such
stochastic issues.

A number of probabilistic OPF algorithms have been pro-
posed during past few decades. Monte Carlo simulation has
been intensively used to present the intrinsic characteristics

of power systems [9]. Existing research has focused on the
improvement of probabilistic OPF methodologies. In [10],
a two-point-estimate-method (2PEM) algorithm is applied in
probabilistic OPF to address uncertainties against the compet-
itive electricity market. A hybrid solar-wind power system is
discussed in [11], in which the correlation of uncertain vari-
ables are considered by using the modified 2PEM algorithm.
In [12], forecasting errors of RES is considered by using a
chance-constrained multi-objective probabilistic OPF. In [13],
the probabilistic OPF incorporated with Taguchi orthogonal
array tables (TOAT) is proposed to account for uncertainties
by RES. However, most of the existing probabilistic techniques
cannot provide the full set of state spaces, which may end up
with local optimal solutions. For large systems with multiple
constraints at buses and trans-mission lines, these probabilistic
algorithms may lead to large errors in the solution or even fail
to map a global optimum. In addition, reliability issues are
barely concerned in the literature in which most of the existing
algorithms do not utilize the effects of uncertainty into robust
operation.

To this end, a DC OPF algorithm considering worst-case
scenarios is proposed in this paper that provides the minimum
operating cost and maintains the highest possible reliability
levels. Inspired by [13] and [14], the probabilistic OPF prob-
lem is transformed into a set of deterministic OPF formulations
based on selected scenarios representing RES and load uncer-
tainties, and additional auxiliary constraints are imposed into
the scenarios to narrow down the optimal solution space. The
remainder of the paper is organized as follows. In Section
II, the general probabilistic OPF formulation with RES is
modeled. Section III focuses on the modeling of uncertainties
of RES and load, and a modified OPF considering worst-case
scenarios is proposed. Case studies based on the IEEE 14-bus
and 57-bus benchmark system are investigated in Section IV.
in which simulation results validate the effectiveness of the
proposed method by using two quantification indices.

II. PROBABILISTIC OPF FORMULATION

The OPF formulation incorporating AC power flow equa-
tions is sometimes infeasible to analyze large power systems
due to nonlinearity and non-convexity [15]. DC OPF extends
the decoupling principle to form linear constraint sets and



requires less computation time since only active power flow
equations are considered [16], [17]. DC OPF is simplified from
AC OPF based on three assumptions: a) the line resistance
Gij is much smaller than the line reactance; b) the difference
of voltage angles at adjacent buses is small; and c) all bus
voltage magnitudes are approximated as nominal values. In
the following discussion, we will focus on the DC OPF
formulation unless otherwise specified.

A. Objectives

The objective of OPF is to minimize the total operational
cost of generators, which can be formulated as follows:

F (PGi) = aiP
2
Gi + biPGi + ci, i ∈ NB (1)

where ai, bi and ci are cost coefficients and NB is the number
of buses.

B. Constraints

We denote θi to be the power angle at bus i and Bij to
be the susceptance between bus i and j. The real power flow
at buses and transmission lines can be derived respectively as
follows:

PBi =
∑

j∈NB ,
j ̸=i

Bij(θi − θj), i, j ∈ NB (2)

PTij = Bij(θi − θj), i, j ∈ NB (3)

The above equations can be written in the matrix form as
follows:

PB︸︷︷︸
NB×1

= BB︸︷︷︸
NB×NB

θ (4)

PT︸︷︷︸
NT×1

= BT︸︷︷︸
NT×NB

θ (5)

where NT is the number of transmission lines, BB and BT

are corresponding supceptance matrices.
The RES penetration introduce more uncertainties into

power systems that make operation conditions more unpre-
dictable. Probabilistic OPF addresses uncertainty parameters
in which traditional generators are considered as certain and
controllable variables, while RES and loads are regarded as
uncertain variables. Parameters of RES and loads can be
modeled as variables with probabilistic distributions [18]. At
each bus, the power balance can be express as follows:

P̃Bi = PGi + P̃Ri − P̃Li, i ∈ NB (6)

where the tilde superscript refers to the corresponding uncer-
tain variables. Considering (4) and (5), we can write (6) in the
matrix form as follows:

P̃B = PG + P̃R − P̃L = BBB−1
T PT (7)

For each transmission line, the power flow is restricted by
the maximum limits. The inequality constraints for transmis-
sion lines can be expressed combining with (7) as:

PT ≤ P̃T = B−1
T BB(PG + P̃R − P̃L) ≤ PT (8)

For each generator unit, the output is limited by its power
ratings, which is formulated as follows:

PGi ≤ PGi ≤ PGi, i ∈ NB (9)

C. Probabilistic DC OPF Formulation

Following the above objective function and constraints, the
probabilistic OPF formulation is presented as follows:

f : min
∑
i∈NB

F (PGi)

s.t. (1), (4), (5), (7) − (9) (10)

It can be easily observed that the probabilistic formulation in
(10) is linear with random variables in (7) and (8).

III. WORST-CASE SCENARIO FORMULATION

In this section, worst-case scenarios are selected by aggre-
gating load variables and selecting representative values of
RES. The original probabilistic OPF is transformed into sev-
eral deterministic OPF formulations with additional constraints
manifesting uncertainties of loads and RES.

A. Uncertainties Modeling of Loads and RES

Fluctuations exist mainly in loads and RES forecasting
errors [11]. The uncertainties of loads and RES are inde-
pendently modeled since the correlations on their forecast
techniques are usually weak. The loads are considered to
follow the normal distribution [19] as follows:

PLi ∼ N
(
µi, σ

2
i

)
, i ∈ NB (11)

In this paper, wind turbines are assumed to be the RES in
the system. Generally, the generation of wind turbines follow
the Weibull distribution [20]:

ρ (v) =
k

c
(
v

c
)k−1e−

vk

c (12)

where k and c are the shape and scale parameter, respectively.
v is the wind speed. The outputs of RES can be approximated
in relation with v as follows [11], [21]:

PRi =


P i
Ri rated

v − vicin
virated − vicin

, vicin ≤ v ≤ virated

P i
Ri rated, virated ≤ v ≤ vicout

0, otherwise

, i ∈ NB

(13)

where P i
Ri rated is the power rating of ith wind turbine, vicin,

vicout and virated are the rated speed, cut-in speed and cut-out
speed, respectively.



B. Aggregation of Load Variables

Let P̃L−agg denote the array of the aggregation of all loads:

P̃L−aggP̃L−agg = B−1
T BBP̃L (14)

Since the load variables at different buses are independent
[22], recalling (8), the term including loads forms the follow-
ing normal distribution:

P̃L−agg ∼ N(B−1
T BBµ, σT (B−1

T BB)
T
B−1

T BBσ)
(15)

where µ and σ refers to the mean value and stand deviation
array of the load variables, respectively.

For each transmission line, the term including P̃L with NB

random variables in (8) is transformed into one aggregated
variable representing effects of all loads. In total, the number
of random variables is reduced from NL+NB to 1+NB . As
a consequence, the computational burden has been alleviated.

C. Representative Values for Random Variables

The number of representative values for random variables
in loads and RES also has significant influences on the
computational complexity. Apparently, a smaller number of
representative values lead to the faster processing time. In this
paper, two representative values are selected for the aggregated
load and RES variables [10], [11]. For the aggregated load
P̃L−agg , two representative vectors are selected as follows:

PL−agg ∈{B−1
T BBµ + σT (B−1

T BB)TB−1
T BBσ

B−1
T BBµ + σT (B−1

T BB)TB−1
T BBσ} (16)

For RES variables P̃R, zero and the rated capacity are
adopted respectively since the outputs of RES are always in
this zone. The selected values are presented as follows:

PR ∈ {0, PR rated} (17)

D. Selection of Worst-case Scenarios

After selection of representative values for each random
variable, a total number of 21+NB possible scenarios are
formed. Among all the scenarios, the constraints on transmis-
sion lines must be determined for each scenario. (8) can be
presented as a set of the following formulations:{

PT − B−1
T BBPG ≤ B−1

T BBP̃R − P̃L−agg

PT − B−1
T BBPG ≥ B−1

T BBP̃R − P̃L−agg

(18)

Suppose the total number of M scenarios based on repre-
sentative values of random variables have been selected. The
constraint for each transmission line can be thus formulated
as follows:PTi −B−1

Ti BBiPG ≤ min
m∈M

(B−1
Ti BBiP̃R,m − P̃L−agg,i,m)

PTi −B−1
Ti BBiPG ≥ max

m∈M
(B−1

Ti BBiP̃R,m − P̃L−agg,i,m)

i ∈ NT (19)

where the subscript i denotes the ith row of the corresponding
matrix.

Start

Calculate min and max

i=N?

Formulate the OPF  

End

Y

N

i=i+1

i=1

Generate indices for

random variables

Generate representative

scenarios for ith variable

Fig. 1. Flowchart of Selecting the Worst Scenario.

The scenarios with the max/min constraints are regarded as
worst-case scenarios, because they provide the strictest line
constraints for the OPF that has the highest reliability levels.
As all the random variables are independent, the additions of
the right terms in (19) are linear and can be further written as
follows:

PTi −B−1
Ti BBiPG ≤

∑
k∈NB

min
m∈M

(
B−1

Ti,kBBiP̃R,m

)
− max

m∈M

(
P̃L−agg,i,m

)
(20)

PTi −B−1
Ti BBiPG ≥

∑
k∈NB

max
m∈M

(
B−1

Ti,kBBiP̃R,m

)
− min

m∈M

(
P̃L−agg,i,m

)
(21)

The process of selecting worst-case scenarios is illustrated
in Fig. 1. For random variables of RES, the correspond-
ing terms max

j∈M
{−Bi,k, PR,k,j} are independent with other

variables. Thus, the max/min worst-case scenarios of each
transmission line can be obtained by selecting maximum and
minimum values for each random variable and adding each
corresponding terms.

E. Proposed DC OPF Formulation

The additional auxiliary constraints are added into the
proposed probabilistic OPF formulation with worst-case sce-
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Fig. 2. Schematic diagram of IEEE 14-bus power system.

narios, which is obtained as follows:

f : min
∑
i∈NB

F (PGi)

s.t. (1), (4), (5), (7) − (9), (16), (17), (20), (21) (22)

IV. CASE STUDY

In this section, an IEEE 14-bus and IEEE 57-bus benchmark
system are simulated. The simulations with MATPOWER in
the Matlab environment [23]. In order to show the effective-
ness of the proposed method, a deterministic formulation with
conventional transmission line constraints and a probabilistic
OPF based on TOAT in [13] are simulated as well.

A. Validation Indices

The validation process needs to be conducted in order
to appropriately compare and evaluate the performances of
different methods. Monte Carlo simulation (MCS) is adopted
to generate a series of random scenarios [24], since it is
capable of manipulating a large number of random samples
with different combinations of uncertain values [25]. Random
variables of load and RES are sampled based on their distribu-
tion characteristics mentioned in Section III. Meanwhile, the
generator outputs are set as the optimized results except for
those at the slack bus. In each scenario generated by MCS,
the generation constraints and transmission line constraints
are investigated. If all the constraints are within their limits,
the tested scenario will be identified as a feasible scenario;
otherwise, it is identified as unfeasible [26]. After all the
scenarios generated by MCS are examined, the robust degree
of the optimized results can be calculated as follows:

df =
nv

nMCS
× 100% (23)

where nv and nMCS are the number of all feasible and tested
scenarios, respectively.

The other confirmatory parameter to evaluate the generation
insufficiency is expected energy not supplied (EENS). It is

TABLE I
GENERATION PARAMETERS IN IEEE 14-BUS SYSTEM

Type Bus number
Power limits(MW) Cost parameter
Pmax Pmin ai bi ci

generators

1 100 0 0 25 0
2 80 0 0.25 20 0
3 80 0 0.01 40 0
6 60 0 0.01 40 0
8 60 0 0.01 40 0

RES
2 30 0 0 0 0
3 30 0 0 0 0

TABLE II
TRANSMISSION LINE PARAMETERS

From To
Resistance Reactance Susceptance Rated Capacity

(p.u.) (p.u.) (p.u.) (MW)

1 2 0.01938 0.05917 0.0528 80

1 5 0.05403 0.22304 0.0492 40

2 3 0.04699 0.19797 0.0438 50

2 4 0.05811 0.17632 0.034 40

2 5 0.05695 0.17388 0.0346 40

3 4 0.06701 0.1710 0.0128 50

4 5 0.01335 0.04211 0 80

4 7 0 0.20912 0 40

4 9 0 0.55618 0 40

5 6 0 0.25202 0 40

6 11 0.094989 0.1989 0 40

6 12 0.12291 0.25581 0 40

6 13 0.06615 0.13027 0 40

7 8 0 0.17615 0 40

7 9 0 0.11001 0 40

9 10 0.03181 0.0845 0 40

9 14 0.12711 0.27038 0 20

10 11 0.08205 0.19207 0 20

12 13 0.22092 0.19988 0 20

13 14 0.17093 0.34802 0 20

defined as the average of differences between the optimized
generation outputs and the variable demand values when the
scenario is unfeasible. In scenarios with feasible solutions,
EENS is counted as zero. In two case studies, nMCS is set to
be 10000. The standard deviation for the aggregated loads is
set to be 5%. In addition, the RES distribution is set as the
Weibull distribution with k=1.72 and c=1.91.

B. IEEE 14-bus System

The diagram of the IEEE 14-bus benchmark power system
is presented in Fig. 2. The transmission network parameters are
presented in [27]. In addition, two 30 MW wind turbines are
added at bus 2 and 3, respectively. For all generation units,
including RES and generators, their output limits and cost
parameters are presented in TABLE I, in which traditional
generators follow the quadratic cost formulation and RES are
assumed to have no operational cost. The transmission line
constraints are shown in TABLE II. There are 11 loads in



TABLE III
SIMULATION RESULTS OF IEEE 14-BUS SYSTEM

Process Robust EENS Generation
time(s) degree (MW/h) cost (103$/h)

Traditional 0.022249 4.29% 57.0683 6.0715
TOAT 0.045919 73.92% 15.2941 6.6863

Worst case 0.028087 89.92% 5.9574 6.8649

TABLE IV
OPTIMIZED GENERATION OUTPUTS OF IEEE 14-BUS SYSTEM

Type
Bus Generation outputs (MW)

number Traditional TOAT Worst case

generators

1 100 60.4041 49.0166
2 40.7763 40.2556 42.5230
3 19.4078 30.6494 34.3694
6 19.4079 35.7711 35.6472
8 19.4078 31.9196 37.4435

RES
2 30 30 30
3 30 30 30

the IEEE 14-bus system, which can be aggregated into one
uncertain variable based on (14). Therefore, there exists three
random variables including an aggregated load variable and
two RES variables.

The process time, robust degree, EENS and operating cost of
the traditional deterministic OPF, the probabilistic OPF with
TOAT and the proposed OPF with worst-case scenarios are
presented in TABLE III respectively. The optimized generation
outputs of three methods are also shown in TABLE IV.

The results indicate that the traditional OPF achieves the
lowest generation cost, whereas its robust degree is low
compared with other OPF methods. In the traditional OPF,
the generator with the least marginal cost (i.e. generator at
bus 1) produces the most power in order to achieve the
minimum operational cost, reaching its maximum capacity.
In real situation, however, generators which have low costs
do not always operate at their full capacity due to system
constraints and reserve requirements. Therefore, the result in
traditional OPF provides an extreme operation strategy. When
the fluctuations on loads and RES occur, there is a large
probability that the transmission lines are overload at the risk
of failure. On the contrary, when the uncertainties of loads
and RES are considered in the proposed OPF with worst-
case scenarios, part of transmission capability is reserved by
additional auxiliary constraints, resulting into more averaged
power dispatch strategies. Therefore, the OPF with worst-case
scenarios achieves higher robust degrees and lower EENS at
the expense of the increased generation costs.

Compared with the proposed OPF with worse-case sce-
narios, the main drawbacks of the OPF with TOAT includes
the decision making on scenarios selection and computational
time. The TOAT method is unable to cover the strictest

TABLE V
GENERATION PARAMETERS IN IEEE 57-BUS SYSTEM

Type Bus number
Power limits(MW) Cost parameter
Pmax Pmin ai bi ci

generators

1 200 0 0 20 0
2 100 0 0.01 40 0
3 100 0 0.25 20 0
6 100 0 0.02222 40 0
8 100 0 0.01 20 0
9 100 0 0.01 40 0
12 100 0 0.0323 20 0

RES
8 50 0 0 0 0
9 50 0 0 0 0
12 50 0 0 0 0
43 50 0 0 0 0

TABLE VI
SIMULATION RESULTS OF IEEE 57-BUS SYSTEM

Process Robust EENS Generation
time(s) degree (MW/h) cost (103$/h)

Traditional 0.026893 1.20% 171.0055 2.9095
TOAT 0.533138 69.00% 44.8387 3.164

Worst case 0.043113 93.91% 10.9609 3.2538

conditions for three random variables include the aggregated
load and two RES, since it selects three scenarios out of
eight combinations. Therefore, its robust degree is less than
the proposed OPF. On the other side, large computational
time is consumed to produce orthogonal arrays. Hence, the
computation time would be drastically reduced if the arrays
are preprocessed prior to the problem formulation.

C. IEEE 57-bus System

In the IEEE 57-bus benchmark power system, four wind
turbines with the capacity of 50 MW are connected to bus
8 and 9, 12 and 43, respectively. The parameters of all
generation units are presented in TABLE VI. Similarly, with
an aggregated load, there are five random variables including
one aggregated load and four RES variables. The process time,
robust degree, EENS and operating cost of three cases are pre-
sented in TABLE VI, respectively. The optimized generation
outputs of three methods are also shown in TABLE VII.

TABLE VII shows a similar result that the traditional OPF
achieves the lowest generation cost compared with the OPF
with worst-case scenarios, whereas its robust degree and EENS
is quite poor. It is also illustrated in TABLE VII that the
generator with the least marginal cost (i.e. generator at bus
1) operates at its maximum capacity in the traditional OPF.
In the OPF with worst-case scenarios, the generator output
at bus 1 has been decreased due to the additional auxiliary
constraints on the transmission lines. As a consequence, the
robust degree and EENS has been increased.

In the IEEE 57-bus system, five random variables come
from the aggregated load and four RES, resulting in a drastic



TABLE VII
OPTIMIZED GENERATION OUTPUTS OF IEEE 57-BUS SYSTEM

Type
Bus Generation outputs (MW)

number Traditional TOAT Worst case

generators

1 250 150.3943 87.9669
2 15.1642 0 0
3 40.6065 40.5084 45.8984
6 15.1642 80.1814 100
8 400 400 400
9 15.1642 99.9999 100
12 314.7005 279.7157 316.9346

RES

2 30 30 30
8 50 50 50
9 50 50 50
12 50 50 50
43 50 50 50

decrease on the robust degree and EENS in the OPF with
TOAT. In the meantime, the proposed OPF holds a high
reliability level. It can be thus concluded that for the OPF with
TOAT, it is very dependent on the size of random variables,
whereas the proposed OPF with worst-case scenarios can
always provide the strictest conditions to maintain the system
reliability.

V. CONCLUTION

This paper presents a novel DC OPF algorithm that accounts
for the uncertainties brought by RES and loads. With the
consideration of worst-case scenarios, the highest operational
reliability is provided while the traditional generators are
scheduled in a cost saving fashion. In the formulation, as-
signing values with largest probabilities to random variables,
the probabilistic OPF is transformed into a set of deterministic
OPF formulations with auxiliary constraints, whose upper and
lower boundaries are determined by the max/min worst-case
scenarios in a finite set of selections. The proposed OPF
algorithm is tested in an IEEE 14-bus and an IEEE 57-bus
power system. By comparing with other methods provided in
the literature, validation indices have shown the effectiveness
of the proposed OPF with worst-case scenarios.
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