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Abstract—This paper proposes a decentralized alternating
direction method of multipliers (ADMM) algorithm for solving
the optimization problem of energy scheduling in microgrids.
Different from the other ADMM-based distributed approaches
which decomposes the monolithic problem spatially into smaller
tractable subproblems, the proposed method adopts a temporal
decomposition on the scenario tree inherited from multi-stage
stochastic programming. Each node in the scenario tree serves
its own optimization with local variables and constraints, and
iteratively updates information with adjacent nodes. By imple-
menting the proposed ADMM algorithm in a rolling fashion,
simulation results have shown the fast convergence of the
temporal distribution framework, and comparisons on optimal
value and computation time with other optimization approaches
reveals its advantages and effectiveness.

Index Terms—Microgrids, stochastic optimization, decentral-
ized algorithm.

I. I
Intensive research on modern control technologies and

increasing amount of investments on renewable energy sources
(RES) have evolved conventional centralized electrical sys-
tems into smart, interactive, and distributed entities. In the
context of microgrid which is comprised of local distributed
generators and varying loads, the dominant adoption of wind
turbines (WT) and solar photovoltaics (PV) may cause stability
issues on system operation due to intermittency and non-
dispatchability of RES. As bidirectional mediator, energy
storages (ES) are capable of mitigating instantaneous power
mismatch, conducting energy shifting and providing auxiliary
services based on various control strategies.
For energy scheduling in microgrids, the system operation

problem is often formulated as an optimization model to
varied desired objectives using forecast information of RES,
loads as well as electricity prices, such as minimization of
operational costs and maximization of social benefits. Never-
theless, forecast stochasticity brings two-sided challenges on
the dispatch problem. On one hand, it is impossible to make
perfect predictions on future information so as to make current
decisions under uncertainty, and the operational decisions are
always made sequentially over time. On the other hand, it
is usually intractable to solve one monolithic problem by
tracking stochastic behaviors.
To this end, multi-stage stochastic programming has been

intensively discussed in existing literature, in which so called
here-and-now decisions are made in advance, then the wait-
and-see decisions are determined upon the realization of

uncertainties [1]. By using a finite number of scenarios to
present uncertain randomness, an equivalent large-scale model
can be formulated with a set of variables in subsequent stages.
A variety of mathematical models and approaches have

been developed for solving multi-stage stochastic programs,
such as progressive hedging [2], [3], model predictive control
[4], [5], reduction to two stage approximation [6]–[8], and
nested benders decomposition [9], [10], in which the basic
idea is to transform multistage stochastic programs with a
finite number of possible future scenarios into deterministic
equivalents. Due to computational intractability, decomposing
approaches are usually needed to tackle large-size problems.
In particular, the alternating direction method of multipliers
(ADMM) algorithm [11] has gained tremendous attention in
recent years for solving large-size problems, and has been
widely employed in statistics, machine learning and related
areas in which extensive training samples are required.
A diversity of studies have applied ADMM into energy

scheduling in microgrids as well as optimal power flow in
distribution networks to decompose the single monolithic
problem in spatial into a series of small subproblems delegated
by parallel agents [12]–[14]. While ADMM is used to make
spatial decomposition in most literature, in this paper, we
propose a novel temporal decentralized algorithm aiming at
the stochastic process in form of scenario tree. The multi-
time dynamic optimization model is formulated as a multi-
stage stochastic program binded with the scenario sets in a
tree structure, in which each node solves the small convex
optimization problem using local information and updates with
adjacent nodes iteratively.
The remainder of this paper is organized as follows. In

Section II, The mathematical optimization model for the
microgrid is presented, and its compact form of multi-stage
stochastic optimization under sampled scenarios is provided
as well. The proposed distributed algorithm based on scenario
tree is elaborated in Section III. Case studies and simulation
results are discussed in Section IV. At last, the conclusion is
summarized in Section V.

II. M M M
A. Formulation of Optimization Problem
We consider a general microgrid model that comprises the

point of common coupling to the utility grid (UG), RES in-
cluding WT and PV, microturbine (MT), fuel cell (FC), ES and



2

Fig. 1. Microgrid structure.

fixed loads (PL) and dispatchable loads (PD). The schematic
diagram of the microgrid is depicted in Fig. 1. Generally, the
microgrid can operate either in the grid connected mode or
in the islanded mode depending on system configurations and
end users’ requirements.
The optimization problem herein aims to determine an

optimal power dispatch for all controllable units within the
microgrid for a predefined finite time horizon T , such that the
total operational and maintenance cost FMG is minimized by
knowing the prediction of time-of-use (TOU) electricity prices,
RES outputs and loads. Due to varying prediction values,
the proposed dispatch must be able to optimize the system
operation while satisfying power balance requirements in the
presence of uncertainties. In other words, the power dispatch
should be optimized so that any stochastic variation is properly
accommodated.
The optimization model with the constraints of different

components in the microgrid can be formulated as follows:

F : min
∑
t∈T

{Ct
UG + Ct

MT + Ct
FC + Ct

ES} (1)

where

Ct
UG = cBPt

UGB
+ cSPt

UGS
(2)

Ct
MT = aMTPt

MT
2
+ bMTPt

MT + cMT (3)
Ct
FC = bFCPt

FC (4)
Ct
ES = aESPt

ES
2 (5)

Subject to:
1. Power balance:

Pt
UG + Pt

MT + Pt
FC + Pt

ES + Pt
PV + Pt

WT = Pt
L + Pt

D (6)

2. Energy storage (ES):

Pt
ES = Pt

ESDηES + Pt
ESC/ηES (7)

0 ≤ Pt
ESD ≤ btESPmax

ES (8)
(1− btES)Pmin

ES ≤ Pt
ESC ≤ 0 (9)

Et−1
ES + Pt

ESΔt = Pt
ES (10)

θminES ER
ES ≤ Et

ES ≤ θmaxES ER
ES, ∀t ∈ T (11)

3. Utility grid (UG):

Pt
UG = Pt

UGB
+ Pt

UGS
(12)

btUGPmin
UG ≤ Pt

UGS
≤ 0 (13)

0 ≤ Pt
UGB

≤ btUGPmax
UG (14)

4. Micro turbine (MT):

btMTPmin
MT ≤ Pt

MT ≤ btMTPmax
MT (15)

5. Fuel Cell (FC):

0 ≤ Pt
FC ≤ Pmax

FC (16)

6. Dispatchable loads (PD):

0 ≤ Pt
D ≤ Pmax

D (17)
Ct−1
D − Pt

DΔt = Ct
D (18)

The optimization objective is to minimize the total opera-
tional cost within T including various cost functions in (2)-
(5). (2) denotes the grid-tied electricity tariff, in which the
buying price cB(t) is higher than the selling price cS(t) to
prevent energy arbitrage from the market; (3) denotes the
operational cost of MT presented with a quadratic function; (4)
denotes the fuel cost of FC and; (5) denotes the operation and
maintenance cost. Note that the RES investment cost is not
considered since it should be settled in the planning stage.
Multiple constraints are presented in (6)-(18) for different
components in the microgrid, including UG, ES, MT, FC
and PD. The above optimization problem is a mixed-integer
quadratic programming (MIQP) model, and such the non-
strictly convex model can be solved efficiently by various
commercial solvers.

B. Compact Form of Multi-stage Stochastic Optimization

Following the multi-stage scenario-based stochastic pro-
gram [15], the above optimization model can be formulated
into a compact mathematical form, which can be written as
follows :

FT : min
v,w

∑
t∈T

E[ ft(vt,wt, ut) ] (19)

s.t. G(vt,wt, st−1, st, u) = 0, ∀ t ∈ T
H(vt,wt, st−1, st, u) ≤ 0, ∀ t ∈ T
vt ∈ Vt, wt ∈ Wt, st ∈ St, ∀ t ∈ T
ut ∈ {Ut : (ft,Vt) ∀ t ∈ T }

where vt = {Pt
UG,Pt

MT,Pt
D} denotes the here-and-now deci-

sions including power dispatches of UG, MT and DL. Such
those variables must be made before the uncertain data at time
t is known. In the meantime, wt = {Pt

FC,Pt
ES} denotes the wait-

and-see decisions including power dispatches of ES and FC
to fill up the prediction deviations. st = {Et

ES,Ct
D} denotes the

state variables including the SOC of ES and available capacity
of DL. ut = {Pt

PV,Pt
WT,Pt

L} denotes the scenario instance in the
set Ut at t including power of WT, PV and fixed loads. G and
H are combination of equality and inequality constraints in
(6)-(18), respectively, in which only the state variable set st−1
in last time interval are coupled. Furthermore, E[ ft(vt,wt, ut) ]
in the objective function is the expected optimal value at t
under the succeeding scenario set Ut.
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III. D ADMM S T
In this section, a temporal decentralized algorithm is pro-

posed for the aforementioned multi-stage stochastic problem
FT, in which ADMM [11] is implemented based on the
scenario tree structure. With the linkages established by the
method of multipliers [16], the original large-scale convex
objective functions are decomposed into a series of smaller
subproblems with small variables sets that can be efficiently
solved iteratively, leading to a global convergence with short
iteration times [17], [18].

A. Scenario Tree Generation
It is expected that the prediction error widens as the forecast

horizon increases due to the uncertainty on variation trends
[19]. To accommodate a multi-stage stochastic programming
model, the scenario tree is useful to approximate the stochastic
process evolving with time. On the other hand, the computa-
tional burden of the model can be alleviated by reducing the
number of scenarios, while the accuracy must be maintained.
In this paper, the tree generation algorithm based on the
backward scenario reduction [20] is implemented to create a
subset M to be the set of M nodes in the scenario tree, and
assign new probabilities Ρ = {pm : m ∈ M} from the initial
scenario set for M.
We denote Fm, Cm to be the root and leaf set of node m,

respectively. Fm, Cm can be ∅ if m is the top root or the last
leaf node in the scenario tree. tm is denoted to be the index of
time interval in which node m is located. Indexed by the node
set M in the scenario tree, the optimization problem (19) can
be re-organized as:

FM : min
v,w

∑
m∈M

pm fm(vm,wm, um) (20)

s.t. G(vm,wm, sm, sfm, um) = 0 (21)
H(vm,wm, sm, sfm, um) ≤ 0 (22)
vm ∈ Vm, wm ∈ Wm (23)
s fm ∈ S f

m, sm ∈ Sm (24)
um ∈ Um, ∀ m ∈ M (25)
vcm = vn, ∀n ∈ Cm, m ∈ M (26)

In (26), we introduce an auxiliary set vcm to manifest the cou-
pling requirements on here-and-now decision variables, since
their values must be determined before uncertain scenarios are
realized at each time interval. It is also observed from FM that
both sfm in its root Fm and vcm in its leaf Cm are needed to serve
as local information for each individual node m ∈ M.

B. Decentralized Algorithm with ADMM
For the sake of brevity, we rewrite the formulation (20) as

follows:
FM : min

xm,x′m

∑
m∈M

pm fm(xm, x′m) (27)

s.t. G(xm) = 0, ∀ m ∈ M (28)
H(xm) ≤ 0, ∀ m ∈ M (29)
xm = {vm, vcm, sm, sfm}, ∀ m ∈ M (30)
x′m = {wm}, ∀ m ∈ M (31)

Fig. 2. Data exchange between adjacent nodes.

To convert the original multi-stage stochastic problem into
multi-block distributed optimization structure, we define the
auxiliary set ym as the exact replica of the original variable
set xm, and their associated multipliers Λm as follows:

ym = {ṽm, ṽ c
m, s̃m, s̃ fm} (32)

λm = {λvm , λvcm , λsm , λsfm} (33)
ym = xm (34)

Note that ym in (32) does not include any wait and see
variables in x′m. The augmented Lagrangian in the scaled form
for FM can be formulated as follows:

Lm =
∑
m∈M

{
pmfm +

ρ
2 ∥xm − ym + λm∥22

}
(35)

The ADMM algorithm solves (35) iteratively for each node
m in kth iteration as follows:

xk+1
m = argmin

xm

{
pm fm +

ρ
2 ∥xm − ykm + λkm∥22

}
(36)

yk+1
m = argmin

ym

{ ρ
2 ∥x

k+1
m − ym + λkm∥22

}
(37)

λk+1
m = λkm + (xk+1

m − yk+1
m ) (38)

Fig. 2 illustrates the sequential procedure of data exchanges
between adjacent nodes in x and y updates. in each x-update,
the node m acquires ṽc from its root Fm and s̃ f from its leaves
set Cm from the optimal values in last y-update. Likewise, in
each y-update, the node requires s f from its root Fm and vc
from its leaves set Cm in last x-update. At last, the multiplier
set λm is to be updated according to optimal results in the
current iteration.
To check the overall convergence of the algorithm, we

denote rk and sk as the residuals in kth iteration to check the
primal and dual feasibility. They are expressed as follows,
respectively:

rk = ∥xk − yk∥2 (39)
sk = ρ∥yk − yk−1∥2 (40)

Since there is no general rule for the stopping criteria, it is
empirical to recognize the ADMM reaches optimality when
both rk and sk are within the tolerance of 10−3√K [11], where
K is the number of iterations.
We further implement the proposed temporal ADMM algo-

rithm in a predictive fashion to get optimal scheduling in the
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1: Initialize j = 1
2: for j = 1 to N, do
3: Generate the scenario tree Mj for Tj according to the selected

confidential level, where t = j, ..., j+T.
4: repeat
5: for m ∈ M do
6: Solve temporal ADMM by (36)-(38).
7: end for
8: until Residuals in (39)-(40) are less than stopping criteria.
9: Determine vt by optimal value obtained by ADMM.
10: On arrival of the forecast data (RES and loads), determine wt

and st.
11: end for

Fig. 3. Optimization procedure with rolling horizon.

TABLE I
M C

Parameter Value (unit) Parameter Value
UG ES

Pmax
UG (kW) 100 Pmax

ES (kW) 40
Pmin
UG (kW) -100 Pmin

ES (kW) -40
MT η 0.9

Pmax
MT (kW) 100 ER

ES (kWh) 150
Pmin
MT (kW) 15 E0

ES (kWh) 75
aMT ($/kWh2) 5e−4 θmaxES 0.95
bMT ($/kWh) 2e−1 θminES 0.05

cMT ($) 0 aES ($/kWh2) 0.12
FC DL

Pmax
FC (kW) 0 Pmax

D (kW) 0
Pmin
FC (kW) 40 Pmin

D (kW) -60
bFC ($/kWh) 0.5 C0

D (kWh) 300

rolling horizon T within a predefined time length N (typically,
24h) [21]. The overall procedure is illustrated in Fig. 3. At
current time t, the optimal scheduling is carried out by the
proposed ADMM for the entire upcoming horizon, whereas
only the dispatch decisions vt within the present time interval
will be committed before realization of the uncertain data Ut.,
and wt is then made together with after the real data of RES
and loads are obtained. Afterwards, the state variables st are
updated regarding the full dispatch in time t, and the same
scheduling will be executed for t+ 1 until the rolling horizon
eventually ends.

IV. C S
A. Input Data and Simulation Setting
In this section, the proposed temporal decentralized algo-

rithm is demonstrated in a microgrid, whose specifications are
detailed in TABLE. I. For uncertainty modeling, it is assumed
the forecast error of loads and renewables unfolds with time
increasingly, that the mean value is exactly the forecast and
the stand deviation varies progressively from 5% at present to
15% at the end of the prediction horizon. The initial number
of sampled scenarios is 50, covering 95% of the confidential
level for the whole distribution. It is also reasonably assumed
that the forecast values of WT, PV and loads are independent
and irrelevant with each other.
The buying and selling electricity prices in 24 hours are

depicted in Fig. 4. The rolling horizon N and scheduling
horizon T are set to be both 24, respectively. The entire
scheduling with the proposed algorithm in a rolling fashion

Fig. 4. Electricity price in 24 hours.

Fig. 5. Convergence of the decentralized algorithm.

Fig. 6. Optimal energy scheduling and SOC change of ES in microgrids.

is conducted in the Python platform on the PC with 3.10 GHz
CPU and 8.0 GB RAM. The commercial solver Gurobi [22]
is used to solve the mathematical models in all cases.

B. Results and Discussion
1) Convergence of ADMM: Fig. 5 illustrates the evolution

of objective value as well as residual properties. The optimal
value in the single epoch can be obtained within 300 itera-
tions, when the stopping criteria of primal and dual residuals
satisfied (less than 10−3√K). Note that the proposed algorithm
does choose the typical initial values; it is suggested in [11]
that the performance could be further potentially improved by
setting the initialization with reasonable values for decision
variables that are approximately closed to the optimal solution.
2) Energy Scheduling: Fig. 6 shows the results of the

optimal energy scheduling by the proposed decentralized algo-
rithm and two-stage stochastic programming by comparison. It
is indicated the controllable units are dispatched according to
their costs and operational constraints, that UG only provides
power when the electricity price is relatively low, whereas the
MT supplies the majority of loads in rest of time intervals.
On the other side, PD is also scheduled mostly at hour 2-5
as the reversed power source at low electricity price ranges.
In the entire time horizon, FC only provide little power at
hour 15 since ES has the full capability to support stochastic
errors by inaccurate forecast at most times. ES responds the
high price signals effectively as well, since the SOC of ES
always ranges with in the desired region even it supplies most
of power uncertainties and forecast errors in the prediction.
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TABLE II
C D A

Type deterministic two-stage SO proposed
Scheduled cost ($) 472.56 489.68 488.44
Committed cost ($) 523.86 501.79 497.22
Tol. comp. time (s) 12.33 129.48 196.33
Ave. comp. time (s) 0.51 6.02 7.96

3) Comparison with Other Methods: To evaluate the per-
formance of the proposed decentralized algorithm, the deter-
ministic optimization with the rolling horizon and the two-
stage stochastic optimization based on Benders decomposition
[23] are conducted as the comparative cases.
The scheduled and committed cost, total and average com-

putation time of all three cases are presented in TABLE II. It
is shown that the deterministic method achieves the minimal
scheduled cost, however its committed cost is the highest
due to its poor capability of dealing with uncertainties. On
the contrary, the proposed decentralized ADMM algorithm
achieves a higher scheduled operational cost, while its com-
mitted cost exposed to the realization of uncertainties is the
lowest among three cases. By comparing with the optimal
value using two-stage based method as the benchmark for
stochastic optimization, it is clearly indicated the proposed
algorithm has achieved a better performance.
As for computation results, it is expected that the proposed

algorithm needs the longest computation time, since the op-
timization procedure of ADMM is exhaustive for all nodes
in the scenario tree to reach the convergence. However, these
values of the proposed algorithm are very competitive to those
two-stage based method, in which the iterative calculation is
also applied. Considering there is always a trade-off between
optimal gaps and computational complexity, such the compar-
ative result in terms of computation time can be considered to
be effective since the energy scheduling for the microgrid is
determined hourly.

V. C
In this paper, a novel temporal ADMM decentralized frame-

work based on scenario tree is proposed for stochastic opti-
mization in microgrids. Minimization of the total operational
cost considering intermittency of RES as well as uncertainty
of loads has been achieved. The mathematical model of the
optimization problem is formulated as a multi-stage MIQP
stochastic program. By making the decomposition in the
scenario tree, each node solves its local convex problem
and exchange information with adjacent nodes iteratively.
Simulation studies with a local microgrid successfully prove
the fast convergence of the temporal decentralized ADMM
approach, and the optimized results shows that the proposed
algorithm significantly outperforms other mathematical meth-
ods such as model predictive control and two-stage stochastic
programming algorithms.
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