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Abstract—The integration of renewable energy source (RES)
and energy storage systems (ESS) in microgrids has provided
potential benefit to end users and system operators. However,
intermittent issues of RES and high cost of ESS need to be
placed under scrutiny for economic operation of microgrids.
This paper presents a two-layer predictive energy management
system (EMS) for microgrids with hybrid ESS consisting of
batteries and supercapacitors. Incorporating degradation costs
of the hybrid ESS with respect to the depth of charge (DOD)
and lifetime, long-term costs of batteries and supercapacitors are
modeled and transformed to short-term costs related to real-
time operation. In order to maintain high system robustness
at minimum operational cost, a hierarchical dispatch model is
proposed to determine the scheduling of utilities in microgrids
within a finite time horizon, in which the upper layer EMS
minimizes the total operational cost and the lower layer EMS
eliminates fluctuations induced by forecast errors. Simulation
studies demonstrate that different types of energy storages can
be utilized at two control layers for multiple decision-making
objectives. Scenarios incorporating different pricing schemes,
prediction horizon lengths and forecast accuracies also prove the
effectiveness of the proposed EMS structure.

Index Terms—Optimization; microgrids; energy storage; en-
ergy management system (EMS); hierarchical control.

NOMENCLATURE

A. Indices and suffixes

i Storage device index.
t Time index.
∆t Time interval.
tu, tl Time index in upper and lower layer.
∆tu,∆tl Time interval in upper and lower layer.

B. State Variables

PM (t) Power of utility grid.
PB(t) Power of battery.
PSC(t) Power of supercapacitor.
PL(t) Power of load.
PPV (t) Power of PV.
PWT (t) Power of wind turbine.
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The authors would like to thank ERI@N for the financial support.

C. Parameters

DOD Depth of discharge of battery.
dB(∆t) Depth of Charge of battery in ∆t.
EB.rated Rated battery Capacity.
EB(t) Energy of battery at time t.
ESC(t) Energy of supercapacitor at time t.
ηBc, ηBd Charging and discharging efficiency of

battery.
ηSCc, ηSCd Charging and discharging efficiency of

supercapacitor.
a, b, c Curve-fitting coefficients of battery life-

time.
LB(dB) Battery lifetime with respect to DOD =

dB.
LSC Supercapacitor lifetime.
EBA(t) Actual capacity of battery at t.
Ea(t) Accumulative energy of battery at t
CB Battery replacement cost.
CBAC Battery average degradation cost.
CBDC Battery degradation cost.
CSC Supercapacitor replacement cost.
CSCDC Supercapacitor degradation cost.
Tu,Tl Length of prediction horizon in upper

layer and lower layer.
Pmin
M (t), P

max
M (t) Power limits of utility grid.

Pmin
B (t), P

max
B (t) Power limits of battery.

Pmin
SC (t), P

max
SC
(t) Power limits of supercapacitor.

Smin
B (t), S

max
B (t) SOC limits of battery.

Smin
SC (t), S

max
SC
(t) SOC limits of supercapacitor.

Pmin
B (t), P

max
B (t) Power limits of battery.

σl
B, σ

l
M, σ

l
SC

Cost weighting coefficients.

I. INTRODUCTION

IN recent years, growing interest in renewable energy source
(RES) has prompted microgrids to develop towards more

intelligent and modernized entities. Microgrids integrate the
distributed generators including conventional and renewable
sources to supply predicted load of end-users in a decentralized
manner [1]. However, intermittency and undispatchability of
RES outputs induce system robust problems. Energy from
RES might be unavailable due to bad weather conditions when
electricity is needed [2]. Energy storage system (ESS) is usu-
ally integrated in microgrids to compensate power mismatch.
ESS can also act as bidirectional mediators with the utility
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grid to store and export energy, providing auxiliary services
and financial benefits for end-users based on various control
strategies. In order to meet different operation requirements,
the so-called hybrid ESS which combines different types
of energy storage inherits advantages for each individual to
provide an effective and reliable solution. Researches working
on hybrid ESS in microgrids have covered from real-time
operations that account for instant power sharing [3], [4] and
frequency regulation [5], to scheduling problems that manifest
charging strategies [6] and operational optimization in the long
term [7], [8].

Previous studies for ESS-integrated microgrids have mostly
featured on the design of energy management system (EMS)
to improve energy efficiency and operation reliability of mi-
crogrids [9], [10]. Research in [11] decomposes the microgrid
energy management into a unit commitment problem to ac-
count for voltage and frequency regulation and an optimal
power flow problem to provide reactive power support. In
[12], a heuristic method combined with a centralized EMS and
local EMSs is proposed to determine ESS cycling operation at
the household level. However, existing works have narrowly
considered economic effects of the real-time ESS operation
under different resources, load and environment conditions
[13], and ignored or merely assumed a fixed price as the
operational cost [1], [14]. Different from generation resources,
the short-term dispatch for ESS has a significant impact
on its lifetime in the long term. For example, battery life
would be considerably deteriorated by frequent charging and
discharging. On the other hand, the conflict of economy and
security further complicate the optimal energy management
in microgrids. Increasing the ESS capacity size will provide
larger operating reserves to reduce the probability of loss of
load, however at the expense of extra capital investment [15].
The two-fold requirements enforce the ESS operational cost
to be accurately related to the long-term degradation process
in real-time operation. However, the degradation cost of ESS
was either neglected or modeled on a very rough and general
basis in previous literature [16]–[18].

Hybridization of ESS further urges different dispatch de-
cisions to be made given various operation targets and ESS
characteristics. ESSs with large energy densities such as
batteries are committed to exchange excess energy with other
components and the utility grid, and those with large power
ratings such as supercapacitors are used to compensate the
instant power mismatch. Hence, in the face of different devices
in the hybrid ESS, different time resolutions are required
for the comprehensive design of EMS: the long-term time
horizon manifests operational economy and the short-term
time horizon reflects system security. To this end, this paper
proposes a two-layer hierarchical EMS to account for the
above considerations. The main contributions of this paper are
addressed as follows:

1) A noval two-layer EMS for microgrid including the
hybrid ESS is developed. Power dispatch is scheduled to
minimize the operational cost in the upper layer, and forecast
uncertainties and power fluctuations by RES are minimized in
the lower layer.

2) The degradation cost models of battery and supercapaci-

tor are developed to accurately reflect the explicit degradation
process, bridging the long-term capital cost and the short-term
operational cost for real-time economic dispatch.

3) The proposed EMS is applied to a microgrid presented
in considering different electricity pricing mechanisms. The
simulation studies successfully demonstrate that different types
of energy storages including batteries and supercapacitors can
be dispatched at different control layers for multiple decision-
making objectives. Effectiveness of the proposed EMS struc-
ture is proved by various scenarios incorporating pricing
schemes, prediction horizon lengths and forecast accuracies.

The remainder of this paper is organized as follows. In
Section II, the microgrid modeling is proposed, and degrada-
tion cost models of battery and supercapacitor are presented
respectively. Section III is focused on the formulation of
the proposed two-layer EMS. Case studies and results are
discussed in Section IV, in which the proposed two-layer EMS
is simulated with selected scenarios. At last, the conclusion
and main contributions of this paper are summarized in Section
V.

II. MICROGRID MODELING

A. Microgrid Structure

The schematic diagram of a typical microgrid is depicted in
Fig. 1. Without loss of generality, the microgrid in our research
is comprised of the point of common coupling (PCC) to the
utility grid, a hybrid ESS, a RES system and the aggregate
load. Practically, the microgrid can operate either in the grid
tied mode or independently as an islanded grid, depending on
system requirements, RES conditions and electricity market.
Unless specified otherwise, we will focus on the grid con-
nected mode in the following discussion.

B. Dynamic pricing

The utility grid is operated in an electricity market, where
the electricity price is usually determined by the upper-level
system operator in a static or dynamic way [19]. Static pricing
schemes, such as fixed prices and time-of-use prices, are often
set in advance and do not change with network conditions.
Fixed prices do not usually influence user patterns in microgrid
since the electricity cost does not change with the quantity
of use, whereas time-of-use prices announced by the market
authorities prompt more electricity to be used in off-peak
hours considering relatively lower rates per kWh. Dynamic
pricing schemes, such as the real-time pricing, are sensitive
to locational marginal prices and are often announced hours
ahead, allowing users to make advanced scheduling so that the
operational cost can be minimized [19]. When the bidirectional
communication is allowed, microgrids can make profits by
selling part of excess electricity to the utility grid.

Two pricing schemes, which are time-of-use pricing and
dynamic real-time pricing, are adopted in this paper. In the
time-of-use pricing model, the electricity price corresponds to
a two-level model which has an off-peak value and an on-peak
value. The specific values will be provided in Section V. In
the dynamic real-time pricing model, the price is determined
by the system operator according to the bidding of the market
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Fig. 1. System model of the microgrid.

participants. In this paper, the half-hourly price data in EMA
over a year is adopted to form the hourly data, starting from
May 2013 to April 2014 [20]. Moreover, the selling price is
also set in both pricing models, indicating the price per kWh
that the microgrid sell extra generation back to the utility grid,
which is lower than the buying price.

C. ESS Hybridization

Design features of the hybrid ESS vary in terms of power
density, energy density, lifetime and cost [21]. In this paper,
the hybrid ESS in the microgrid is comprised of the battery
and supercapacitor given their complementary characteristics.
The battery is able to store a large amount of electrical energy
for the sake of high energy density, while the supercapacitor
has high power density to give fast response for charging
and discharging events. The main functions of the hybrid
ESS include maintaining the instantaneous power balance
and minimizing the operational cost over a period of time.
Hence, the battery and supercapacitor should target different
objectives, that the battery is scheduled to operate as the
distributed generation unit for economic dispatch while the
supercapacitor should make up the instant power mismatch.

D. Renewable Power Generation

The implementation of RES in the microgrid gives the
EMS a more cumbersome task to track the instantaneous
supply/demand balance. The microgrid is modeled with two
RES systems including PV panels and wind turbines. PV
generation is considered to have a great variation due to
passing clouds. Wind power is closely correlated with wind
speed, which follows different patterns on seasons and even
days. RES forecast error is considered to have a close re-
lationship with the prediction lead time. Solar power ranges
from 20% to 35% root mean square (RMS) error depending
on different irradiance forecast techniques. Day-ahead wind
forecast currently averages at more than 10% RMS error of
the capacity, and progressively reduces half to 5%-6% for one
hour-ahead forecast [22]. Based on this fact, the RES output
in this paper is modeled with a gradient uncertainty level, in
which the forecast error increases when the receding horizon
becomes larger. There are many existing and ongoing studies
on RES forecasting methodologies, however, they will not be
further discussed since different forecasting techniques are not
within the scope of this paper.

and

(a) (b) (c)

Fig. 2. Different definitions on DOD [24].

III. DEGRADATION COST MODELING

The degradation of ESS is very important to evaluate
economic operation of microgrid analytically [23]. In order to
accurately model the cost properties for microgrid energy man-
agement, the degradation cost of the hybrid ESS is discussed
and mathematically formulated in this section, especially for
the battery and supercapacitor.

A. Modeling of Battery Degradation Cost

The degradation on battery lifetime features on two main
factors, namely, the aging of cycle life that reflects the total
achievable cycle count of a battery unit, and the capacity wear
that accounts for the usable energy [25]. Cycling conditions,
such as the number of frequent charging and discharging,
charging and discharging rates and maintenance scheduling,
have a great impact on the battery lifetime [26]. Improper
cycling may cease to battery failure due to accelerated degra-
dation. Apart from cycling conditions, state parameters also
have significant influences on battery lifetime. Excessive high
or low state of charge (SOC) would drastically deteriorate
battery charging and discharging performance. Temperature
may have a negative impact on the battery life as well, that
at high temperatures the decay process will be accelerated. In
practice, the temperature controller is often included in the
battery management system. Therefore, it is assumed that the
battery degradation due to ambient factors can be neglected.
As for the effect of charging rate, its direct impact on battery
lifetime is negligible in comparison of other parameters when
battery is operating within a certain degree of rated current
[27].

To this end, the primary determinants on battery lifetime
are the actual full capacity and the depth of discharge (DOD).
There are two main DOD definitions in the literature in
accordance with different cycling events, as shown in Fig. 2(a)
and (b). The first is the discharged energy from the full
capacity (100% SOC), and the second refers to a full cycle
consisting of one charging and discharging event [24]. Unless
other specified in this paper, SOC is defined as the leftover
energy compared to the full capacity, and DOD is defined as
the energy in one charging or discharging event with respect to
the full capacity, as illustrated in Fig. 2(c). We also define the
actual full capacity of the battery as the amount of energy that
can be stored at 100% SOC. Note that a cycle event is counted
whenever the operating modes (charging and discharging)
switch to the opposite sides.
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Fig. 3. Relationship of number of lifecycles and DOD of a Ni-Cd battery.

Fig. 3 shows a relationship between the number of life
cycles and the DOD of Ni-Cd batteries [27]. The battery
lifetime has the best fitting in the following expression with
DOD=dB:

LB(dB) = a × dB
−b × e−cdB (1)

where a, b, c > 0 are curve-fitting coefficients. As expected,
the number of life cycles decreases with the increasing DOD.
Without loss of generality, this expression is also applied
for other types of batteries with different parameters such
as Lithium-Ion and Lead-Acid batteries [28]. The statistical
data is usually identified and provided by manufacturing
specifications, however all charging and discharging cycles in
the statistical data are assumed under conditions with constant
DOD, which is apparently impractical in real-time operation.
Therefore, estimation of battery degradation cost by using
the above information would introduce gross errors. To the
best of our knowledge, however, there is unfortunately no
previous work featuring on direct relationships of variable
DODs and battery lifetime. Therefore, in order to take the
battery degradation cost model in a practical fashion, it is
reasonably assumed that the empirical data of life cycles is
accurate enough to estimate the long-term degradation effect,
in other words, the effect of each charging and discharging
cycle event on the lifetime is irrelevant with the historical
charging and discharging profiles.

Given the actual capacity and DOD as two factors, the bat-
tery degradation model is based on the moderate assumptions:

a) The degradation process is considered to be time-linear
throughout the whole battery life [29]; and

b) The degradation cost of each charging and discharging
cycle event with the same level of DOD is the same at different
levels of SOC.

The battery degradation cost model represents a direct
depreciation on its actual capacity and lifetime. Considering
a discharging event starting at time t with the average power
PB(t) for a time interval ∆t, the DOD during this interval,
dB(∆t), can be expressed as:

dB(∆t) =
PB(t)∆t
EBA(t)

(2)

where EBA(t) is the actual capacity at time t. With the
coefficients of charging/discharging efficiencies ηBc and ηBd ,

the average degradation cost per unit energy in this event in
accordance with Fig. 3 can be formulated as follows [30]:

CBAC (t, dB(∆t)) =
CB∆t

2LB(dB(∆t))EBA(t)dB(∆t)ηBcηBd
(3)

Note that it is a levelized degradation cost for each charging
and discharging event with DOD=dB. Therefore, we can get
the corresponding battery degradation cost for this discharging
event by simply multiplying the energy exported from the
battery:

CBDC (t, dB(∆t)) = CBAC (t, dB(∆t)) PB(t)

=
CBPB(t)∆t

2LB(dB(∆t))EBA(t)dB(∆t)ηBcηBd
(4)

After the cycling event, the actual capacity of the battery at
t+∆t is proportionally deprecated, which can be calculated as
follows:

EBA(t + ∆t) = EBA(t) −
EB.rated

LB (dB(∆t))
(5)

where EB.rated is the rated battery capacity.
In order to address the same degradation effect on the

battery, we consider the cost of the charging event equal to
that of the discharging event. Note that operation at too high
or low SOC for a long time would in fact rise the internal
impedance and decompose electrolyte in the battery, leading
to capacity loss and power fade, however such fade in a short
term would be insignificant compared with the degradation
caused by chronic charging and discharging events. It is also
noted that the effect of the charging and discharging rate on
battery life will not be considered as a long-term effect as long
as its current does not exceed the limit defined by manufacturer
specifications, so as for other external parameters such as
temperature and maintenance scheduling [30].

B. Modeling of Supercapacitor Degradation Cost

The lifetime of supercapacitor depends mostly on evapora-
tion rate of liquid electrolyte, which is a principal function of
temperature and terminal voltage [31]. In general, the lifetime
of supercapacitor decreases with increasing central tempera-
ture. Supercapacitor is capable of undergoing thousands of
deep cycles much more than battery and exhibits a much
longer lifetime for more than ten years which is not limited by
cycling stress [32]. Calendar ageing effects of supercapacitor
are mainly resulted from voltage and temperature effects [33].
In particular, thermal conditions may have great influences on
performance of supercapacitor, that capacitance degradation
would be accelerated when the temperature is too high [34].
On the other hand, charging and discharging rates have little
effect on superacapacitor degradation [35].

Since the supercapacitor lifetime at the maximum working
temperature with proper voltage ranges is always given by
manufacturing specifications, it can be reasonably assumed
that supercapacitor is expected to last for the estimated life
within normal operating conditions. Therefore, the superca-
pacitor degradation cost can be considered as a linear function
of time despite of DOD of each charging/discharging event.
Given the estimated supercapacitor lifetime LSC and the
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replacement cost CSC , the supercapacitor degradation cost for
any time interval ∆t can be simply presented as follows:

CSCDC(t) =
CSC∆t

LSC
(6)

(6) shows that different from the battery degradation cost,
the supercapacitor degradation cost is constant irrespective of
cycling conditions. Thus, the supercapacitor degradation cost
is time-linear as long as it is utilized into microgrid. Therefore,
it is more suitable for frequent charging/discharging to fill
instantaneous power imbalance.

IV. PROPOSED TWO-LAYER EMS

Based on the complementary characteristics of the battery
and supercapacitor, in this section, a two-layer EMS is pro-
posed to optimize the microgrid operation. Different from the
two-layer structure formulated in the literature, such as in [36]
that aims for energy loss minimization and in [37] which
minimizes the averaged long-term cost, our proposed EMS
achieves the minimal operational cost with the incorporation
of the degradation model of hybrid ESS.

The objective of the proposed two-layer EMS is to optimize
the power dispatch of power sources and energy resources
in a finite period of time, so that the microgrid operates
economically while satisfying operational limits under RES
uncertainties. We consider a discrete-time optimization prob-
lem incorporated with the model predictive control framework,
since the forecast uncertainty can be potentially compensated
due to feedback mechanism [16], [38]. Fig. 4 illustrates the
hierarchical structure of the proposed two-layer EMS, in which
in which Tu and Tl denote the length of prediction horizon in
the upper and lower layer, respectively. The upper layer EMS
consists of a nonlinear receding model predictive controller
with the time horizon tl ∈ {1, ...,Tl}, and the lower layer
EMS is a quadratic model predictive controller with the
time horizon tu ∈ {1, ...,Tu}. ∆tu and ∆tl indicate the time
intervals in the upper and lower layer, respectively.Control
actions in each time interval are obtained by solving its own
objective function in each layer that the decisions of one
layer influence those of the other. At current time, the optimal
scheduling is formulated for Tu in the upper layer based on the
predictions of the upcoming load profile, renewable outputs
and electricity prices, however only the dispatch within the
time frame Tl∆tl + ∆tu will be implemented as the reference
values to control dispatch actions at the lower layer. Then,
the lower layer EMS makes its own optimization with the
implementation of supercapacitor, which is to minimize power
fluctuations after the realization of forecast errors in each ∆Tl
within the low-layer horizon Tl . After time ∆tu , the lower layer
EMS sends the updated state variables back to the upper layer,
and the scheduling problem will start for the next ∆Tu .

A. Mathematical Model for State Dynamics and Constraints
of ESS

For both upper and lower layer, the power balance con-
straints must be meet at all times, which can be formulated as

Dispatch references

State variables

Tu
Δtu

Forecast
data

…
.

Tl
Δtl

ΔtuForecast

Δtu

errors

Fig. 4. Structure of the proposed two-layer EMS.

follows:

PL(t)︸︷︷︸
Load

= PM (t)︸︷︷︸
Utility grid

+ PB(t) + PSC(t)︸            ︷︷            ︸
ESS

+ PPV (t) + PWT (t)︸               ︷︷               ︸
RES

, t ∈ {tu, tl} (7)

State dynamics must be specified for both the battery and
supercapacitor in terms of capacities and charging/discharging
power for two time horizons. Let PB(t) and PSC(t) denote the
power of battery and supercapacitor, respectively. Considering
charging and discharging efficiencies, the discrete-time capac-
ity difference equations of the battery and supercapacitor can
be presented as follows, respectively:

EB(t) =


EB(t − 1) − PB(t)∆tηBc, PB(t) ≤ 0

EB(t − 1) −
PB(t)∆t
ηBd

, PB(t) > 0
,

∆t ∈ {∆tu,∆tl}, t ∈ {tu, tl} (8)

ESC(t) =


ESC(t − 1) − PSC(t)∆tlηSC, PSC(tl) ≤ 0

ESC(t − 1) −
PSC(t)∆tl
ηSCd

, PSC(tl) > 0
(9)

The inequality constraints include power capacity limits
of the utility grid, battery and supercapacitor as follows,
respectively:

Pmin
M (t) ≤ PM (t) ≤ Pmax

M (t), t ∈ {tu, tl} (10)

Pmin
B (t) ≤ PB (t) ≤ Pmax

B (t), t ∈ {tu, tl} (11)

Pmin
SC (tl) ≤ PSC (tl) ≤ Pmax

SC (tl) (12)

To prevent the battery from being overcharged and overdis-
charged, its SOC limit is expressed as follows:

Smin
B (t) <

EB(t)
EBA(t)

< Smax
B (t), t ∈ {tu, tl} (13)

Accordingly, the supercapacitor SOC limit is expressed as
follows:

Smin
SC (t) <

ESC(t)
ESC.rated

< Smax
SC (t), t ∈ {tu, tl} (14)

Note that the scheduling of supercapacitor will not be
actually included in the upper layer due to its low capacity,
therefore, the state dynamic in (9) and the power constraint
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in (12) are only considered in the lower layer. The lower
boundary of PM (t) is negative when the microgrid is allowed
to sell electricity to the utility grid.

B. Mathematical Model for Upper Layer EMS

With the aforementioned models in Section III, the objective
of the upper layer EMS is to optimize the decision variables
{PM (tu), PB(tu)}

Tu
tu=1 to minimize the total operational cost,

including electricity cost of the utility grid and and battery
degradation cost.

The electricity cost Cu
M (tu) can be presented as follows:

Cu
M (tu) = cm(tu)Pu

M (tu)∆tu (15)

Since the battery degradation cost Cu
B(tu) in each time

interval ∆t can be determined only after when a charging
or discharging event has ended, the power flow direction of
the battery PB(tu) must be specified. To this end, we firstly
denote g(tu) to be an auxiliary binary variable to indicate the
state transition on the charging and discharging events in two
consecutive time intervals:

g(tu) =

{
1, i f PB(tu)PB(tu − 1) ≤ 0
0, i f PB(tu)PB(tu − 1) > 0

(16)

We also denote Ea(tu) as the accumulative energy in kWh
before the cycling events have been changed. Correspondingly,
the accumulative energy Ea(tu) can be written as follows:

Ea(tu) = (1 − g(tu)) Ea(tu − 1) + PB(tu)∆tu (17)

Therefore, the battery degradation cost in the consecutive
time intervals can be presented by the state transition signal
g(tu) the accumulative energy Ea(tu) as follows:

Cu
B(tu) = CBDC(tu,

Ea(tu)
EB(tu)

)

− (1 − g(tu))CBDC

(
tu,

Ea (tu − 1)
EB (tu − 1)

)
(18)

Combining the electricity cost and the battery degradation
cost in the objective function,

the optimization problem in the upper layer EMS is a
nonlinear programming problem since the battery degradation
cost is highly nonlinear. The optimization problem Fu can be
formulated as follows:

Fu : min
∑

tu ∈{1,...,Tu }
Cu
M (tu) +

∑
tu ∈{1,...,Tu }

Cu
B(tu)

s.t. (7), (8), (10), (11), (13) − (18)

variables : {PM (tu), PB(tu)}
Tu
tu=1 (19)

C. Mathematical Model for Lower Layer EMS

The objective of the lower layer EMS is to optimize
the decision variables {PM (tl), PB(tl), PSC(tl)}

Tl
tl=1 so that the

variation resulted from forecast errors with the implementation
of supercapacitor can be minimized. Considering (6) that the
supercapacitor degradation cost is a function only related

1: Initialize tu = 1
2: for tu = 1 to Tu , do
3: Import the forecast data of load and renewables

[PL(tu), PPV (tu), PWT (tu)]
tu+Tu
tu

4: Optimize Fu in upper layer
5: Make decision variables [PB(tu), PM (tu)]

tu+Tu
tu

within
Tl∆tl + ∆tu for the lower layer as set points

6: for tl = 1 to Tl , do
7: Import the forecast data of load and renewables with

errors [PL(tl), PPV (tl), PWT (tl)]
tl+Tl
tl

8: Optimize lower layer objective function Fl

9: Dispatch power of [PM (tl), PB(tl), PSC(tl)]tu+tl
10: end for
11: Return state variables [EB(Tl), ESC(Tl)]tu+1 to the upper

layer
12: end for

Fig. 5. Algorithm of control strategy for two-layer EMS.
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with time, the supercapacitor degradation cost Cl
SC
(tl) can be

writern as follows: ∑
tl ∈Tl

Cl
SC(tl) =

CSC

LSC
Tl (20)

It can be easily observed the supercapacitor degradation cost
is independent with the charging/discharging power.

Accordingly, aside from the supercapacitor degradation cost,
penalty costs that represent deviations from references pro-
vided by the upper layer EMS are added into the objective
function. These penalty terms are denoted as Cl

B(tl) and Cl
M (tl)

that represent the deviations on power references of the battery
and utility grid due to forecast errors of RES in short-time
scales. Given the power references from the upper layer, the
penalty costs can be formulated as a quadratic function:

Cl
B(tl) = (P

u
B(tu) − Pl

B(tl))
2 (21)

and

Cl
M (tl) = (P

u
M (tu) − Pl

M (tl))
2 (22)

In addition, at the end of each prediction horizon, the SOC
of supercapacitor should be maintained at a nominal value
such that it is able to provide ramping services in the coming
future. Hence, the penalty term Cl

SC
(Tl) that accounts for the

capacity of supercapacitor in the prediction horizon terminal
can be also presented as a quadratic function:

Cl
SC(Tl) = (E

u
sc(tu) − ESC.rated)

2 (23)

Combining the above quadratic factors in the objective
function and convex constraints, the optimization problem in
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-4
-2
0
2
4
6
8

Po
w

er
 (k

W
)  Supercapacitor   Battery

 PCC                    Electricity price

0 6 12 18 24 30 36 42 48Time (h)
0.1

0.2

0.3

0.4

0.5

El
ec

tri
ci

ty
 p

ric
e 

($
/k

W
h)

(b) Optimal dispatch in real-time pricing

Fig. 7. Case 1: results of two scenarios with different pricing schemes.

the lower layer can be formulated as a quadratic programming
problem as follows:

Fl : min (
∑

tl ∈{1,...,Tl }
Cl
SC(tl)

+
∑

tl ∈{1,...,Tl }

(
σl
BCl

B(tl) + σ
l
MCl

M (tl)
)

+ σl
SCCl

SC(Tl))

s.t. (8), (9), (10), (11) − (14), (20) − (23)

variables : {PM (tl), PB(tl), PSC(tl)}
Tl
tl=1 (24)

where σl
B, σl

M and σl
SC

are cost weighting coefficients.

D. Remarks

In summary, the control strategy of the proposed two-layer
EMS is outlined in Fig. 5. As illustrated in (19) and (24), the
upper layer EMS minimizes the total operational cost includ-
ing the electricity and degradation cost, and passes decision
variables [PB(tu), PM (tu)] to the lower layer as references.
Considering load fluctuations and RES forecast errors, the
optimization process is executed for each time interval ∆Tl ,
and the scheduling in the lower layer is made thereafter. After
all the dispatch decisions within ∆tu have been made, the
upper layer updates state variables [EB(Tl), ESC(Tl)] and starts
the scheduling for tu = tu + 1.

The optimization problem Fu in the upper layer is a nonlin-
ear mixed-integer problem, as the cost function involved bat-
tery degradation cost Cu

B(tu) is nonlinear and includes integer
terms. Similarly, the optimization problem Fl in the lower layer
is a quadratic mixed-integer problem. There have already been
many mature and advanced solvers with various algorithms so
far that can handle to solve algebraic models with converged
results, therefore comparison of their performances will not
be further discussed since it is out of the scope of this paper.

It should be noted that in the lower layer, the supercapacitor
may sometimes reach the capacity limit in the circumstances

TABLE I
PARAMETERS IN CASE STUDIES

Case pricing scheme forecast error
prediction horizon time interval
Tu Tl ∆tu ∆tl

1
time-of-use

5%-10% 48
12 1h 5min

real-time
2 time-of-use 5%-10% 6-96
3 time-of-use 5%-(10%∼40%) 48

Time-of-use: the electricity price is set as 0.1$/kWh during off-peak hours
(hour 0-8 and 18-23) and 0.25$/kWh at on-peak hours (hour 9-17).

Real-time: the hourly data is adopted by weighting the half hourly data
from May 2013 to April 2014 in Energy Market Company of Singapore [20].

TABLE II
PARAMETERS OF HYBRIDIZED ESS

Type Price Capacity Power
Smin Smax ηc ηd

Coefficients
($/kWh) (kWh) (kW) a b c

battery 600 12 4 10% 90% 95% 95% 4980 1.98 0.016

suparcap 3600 1 10 0% 100% 92% 92% N.A.

when the RES has increasingly excessive output. Since the
upper layer EMS strives to maintain the battery output con-
stant, it is necessary to conduct a new dispatch for all the
components in the upper layer EMS in order not to violate
the supercapacitor constraints.

V. PERFORMANCE EVALUATION

A. Simulation Setups

In this section, the proposed two-layer EMS associated
with degradation cost models is demonstrated in three cases
under different scenarios including pricing schemes, prediction
horizons and forecast errors, and its performance is evaluated
with several existing algorithms. The mathematical model
described above as implemented in Matlab and optimization
problem in the upper and lower layer is solved using the
solver IPOPT [39] and Gurobi [40] integrated with Matlab,
respectively.
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The parameters in the case studies are listed in Table I. The
simulation is conducted for a 48h scheduling horizon, and the
time intervals in the upper and lower layer are set to be 1h
and 5min, respectively. The exact power of load, PV and wind
turbine are shown in Fig. 6. The parameters of hybridized ESS
are shown in Table II. The battery is set to have a capacity of
12kWh at 600$ per kWh and the maximum power of 4kW.
The charging and discharging efficiencies are both 95%, and
the SOC operation range is set to be 10% to 90%. Its DOD-
cycle curve is obtained so that the coefficient (a, b, c) takes the
values of (4980,1.98,0.016), respectively [27]. The capacity
and maximum power of supercapacitor is set to be 1kWh
and 10kW, respectively, with its charging and discharging
efficiency at 92% [41], [42].

In case 1, the time-of-use pricing and real-time pricing are
implemented in two scenarios, respectively. In the time-of-
use pricing, the electricity price is set as 0.1$/kWh during
off-peak hours (hour 0-8 and 18-23) and 0.25$/kWh at on-
peak hours (hour 9-17). In the real-time pricing, the hourly
data is adopted by weighting the half hourly data from May
2013 to April 2014 in Energy Market Company of Singapore
[20]. The selling price is set as 80% of the electricity price
in both pricing schemes. In case 2, six time lengths of the
prediction horizon in the upper layer EMS from 6h to 96h are
selected, respectively. In case 3, variable RES forecast errors
are adopted with the standard deviation from 10% to 40% at
the time terminal in the upper layer.

B. Case Studies

1) Different Pricing Schemes: The results of the optimal
dispatch based on time-of-use pricing by the proposed EMS
are shown in Fig. 7a. As expected, the operation of the battery
is mainly scheduled by the electricity price in the upper layer
EMS, in which the battery is charging during off-peak hours
and discharging during on-peak hours. In addition, excessive
energy generated by the RES at hour 11 to 13 is sold back
to the utility grid since the electricity price is high. Similar
results with the real-time pricing scheme are illustrated in
Fig. 7b. In addition, it is observed that the battery has sensitive
responses to high electricity prices at hour 16, 20 and 37 when
the battery is quickly discharged. When the electricity price
is relatively lower at hour 17 and 18, the battery is charged
to ensure enough energy can be discharged in next following
hours. On the other hand, it can be also observed in Fig. 7 that
the lower layer EMS handles the fluctuation within each hour,
that the power variations of the utility grid and battery have
been stabilized within small ranges while the supercapacitor
is frequently charged and discharged at a large rate to flatten
the load uncertainties and forecast errors.

2) Impact of Prediction Horizons: Fig. 8 shows the results
of six scenarios with different prediction horizons from 6h to
96h. It is indicated in Fig. 8a that the SOC of battery varies
with the changing prediction horizon. When it increases over
24h, the battery SOC change becomes much less significant.
The operational cost and the battery degradation cost are
depicted in Fig. 8b and Fig. 8c, showing that high levels
of detail on prediction horizon result in less variation on
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Fig. 8. Case 2: results of six scenarios with different prediction horizons.

TABLE III
AVERAGE COMPUTATION TIME OF DIFFERENT PREDICTION HORIZONS

prediction horizon
computation time (s)

upper layer lower layer

6h 2.989 2.247

12h 6.732 2.263

24h 12.931 2.182

48h 20.688 2.239

72h 32.433 2.430

96h 50.978 2.305

costs. Typically, the variation on the system operational cost
is reduced when the prediction horizon reaches 24h, because
the load profile follows similar daily patterns. It is also
illustrated in Fig. 8d that despite of the length of prediction
horizon, the average operational cost in 48 hours does not
have great changes with different prediction horizon, whereas
a significant decrease on the battery degradation cost has taken
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Fig. 9. Case 3: results of four scenarios with different forecast errors.

place.
Table III shows the average computation time with different

prediction horizons. It can be reasonably observed that with
the larger prediction horizon setting the computation time of
upper layer increases while that of lower layer remains nearly
same. However, the two-layer EMS ensures the optimal results
to be obtained before the next upcoming time slot, since the
computation time is much shorter than the corresponding time
interval. It is thus clearly shown that that the computation
ability is quite sufficient for the system needs.

3) Impact of Forecast Accuracies: Fig. 9 shows the results
of four scenarios with increasing forecast errors from 10% to
40%. It is indicated in Fig. 9a that battery operation does not
change very much with increasing forecast errors, whereas the
supercapacitor output has been influenced to a great extent as
shown in Fig. 9b. It can be also observed that the supercapaci-
tor output is mainly affected in the daytime when solar energy
is more abundant and intermittent, resulting into relatively
more uncertainties on RES outputs. Since one major objective
of the lower layer EMS is to smooth the battery output, it is
reasonably explained that increasing forecast errors introduces
more volatile variations on the supercapacitor output. On the
other hand, the operation of supercapacitor is regulated by
the lower layer EMS, which is responsible for instantaneous
power mismatch, leading to the fact in Fig. 9c that neither the
total operational cost nor the battery degradation cost has any
significant change with increasing forecast errors.

TABLE IV
COMPARISON BENCHMARKS

Battery cost model Algorithm

I: proposed battery degradation cost A: proposed two-layer EMS

II: fixed battery degradation cost [27], [43] B: single logic control

III: 5-level piece-wise linear cost C: centralized EMS [11]

IV: 9-level piece-wise linear cost

V: quadratic cost [18]

C. Comparison with Benchmarks

In order to evaluate the performance and advantages of
the two-layer EMS with the degradation cost models, several
benchmark approaches and algorithms in the literature are
analyzed. All the comparative scenarios are summarized in
Table IV.

For comparison with the proposed nonlinear battery cost
models, Four other scenarios are simulated arbitrarily for the
case 1 with the time-of-use pricing scheme in Table I. The
fixed battery degradation cost per kWh is calculated from
purple(3) by using the averaged DOD dB = 60% as a regular
basis (SOC from 80% to 20%) [27], [43]. The 5-level and
9-level piece-wise linear models are generated by averaging
the battery degradation cost from 0% to 100%, respectively.
The quadratic cost in [18] and is also incorporated for a more
comprehensive comparison.

To further illustrate the advantages of the proposed two-
layer operation structure, two different control algorithms with
the the single-layer structure are added into the benchmarks.
The single logic control is deployed in which the whole
hybridized ESS operates in just one layer. The battery will
be charged or discharged as long as it is available, while
the supercapacitor only accounts for mitigation of mismatches
between load and PV outputs. The centralized EMS structure
in [11] with the same solver of the proposed algorithm is tested
as well.

Table V shows the results of the comparative cases for all
scenario combinations. It has clearly shown that the proposed
method is advantageous in all terms expect for computation
time. Cases with the fixed battery degradation cost lead to the
worst results as its averaged degradation cost and the discharge
ratio are both the highest, which means the battery may be
inappropriately exploited. On the other side, cases with the
piece-wise linear cost models produces very similar results
with the proposed model with higher costs and discharge ratio
and lower computation time, while cases with the quadratic
cost merely takes the average result with even worse DOD
ratio and computation time ratings.

Compared with the nonlinear model for degradation costs,
one of the major shortcomings of fixed, piecewise linear and
quadratic cost models is they cannot effectively reduce the
charging and discharging frequency, as illustrated by row 4
(discharge ratio) in Table V . This is because the cost is
directly linked with the exchange power of energy storage as
a constant approximation in spite of its operating conditions,
resulting to the fact that SOC and DOD have little relationship
with the real-time degradation process. On the other hand, by
comparing the results of scenario III and IV, it can be observed
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TABLE V
RESULTS OF COMPARATIVE CASES

Result I-A I-B I-C II-A II-B II-C III-A III-B III-C IV-A IV-B IV-C V-A V-B V-C

Operational cost ($) 0.2935 0.4123 0.2946 0.2931 0.5011 0.3122 0.2983 0.4512 0.3129 0.3001 0.4339 0.3102 0.3123 0.4722 0.3270

Batt degradation cost ($) 0.00934 0.03432 0.01642 0.01462 0.06123 0.02046 0.01236 0.03985 0.01936 0.01132 0.03712 0.01712 0.01356 0.03832 0.01397

Discharge ratio∗ (%) 66.34 172.62 89.12 92.36 201.63 111.36 73.26 182.46 94.17 74.12 181.29 81.99 86.42 182.93 101.12

Computation time† (s) 47.556 17.56 306.332 9.563 3.724 126.442 21.429 7.436 152.357 26.462 11.423 171.939 31.437 16.443 193.462

*: Discharge ratio is calculated by adding the DOD of all discharging events and then averaging in 24 hours.
† : Computation time is counted for searching the optimal results in the time interval of upper layer.

that the accuracy of such approximation methods is very
dependent on the sampling points, which may in turn affect
the optimization performance if the sampling points are not
carefully selected. On the contrary, the nonlinear degradation
model provides more levels of detail and ultimately reduces
the charging/discharging frequency since it is derived directly
from the characteristics of different energy storages. Therefore,
the nonlinear degradation cost model can provide the most
accurate and effective results.

As for the algorithms, it can be also seen in Table V
that the formulation of a single-layer optimization problem
may be insufficient to make appropriate power dispatch for
hybridized ESS with distinctive characteristics, especially for
battery and supercapacitor in this case. It can be seen that the
single-layer model in I-C has encountered the computation
issue since the optimization problem cannot be solved within
the predefined time interval (5 min). It is difficult to make
scheduling for supercapacitor in the long time scale such as
one hour due to its lower energy density, and likewise, frequent
charging and discharging for battery in short term deteriorate
the lifetime dramatically, which may be not beneficial for long-
term economic operation. To this end, the time interval for the
single-layer model must be carefully selected to fit the need
of hybridized ESS, especially for the supercapacitor rather
than battery. However, this may affect the result accuracy
in turn. Therefore, one single layer optimization may not
address the functionality of hybridization of energy storages,
and its validity of single-layer optimization structure may
be questioned by such the compromise between prediction
horizon and computational burden. On the contrary, the design
of such a two-layer structure in the paper is specifically
tailored to divide operation modes into variant time scales to
deal with different characteristics of energy storages, at the
expense of the computational time. With high-performance
computer and more advanced solvers, the computation speed
can be speed-up significantly.

VI. CONCLUSION

In this paper, a two-layer EMS for microgrids with the
hybrid ESS considering degradation cost models is proposed.
We model the problem in the way that minimization of the
operational cost is achieved while the power fluctuation by
RES is accounted for. Degradation cost models of battery
and supercapacitor are developed to convert the long-term
capital cost into short-term operation problems. The two-layer
EMS with hybrid ESS is proposed in accordance with the
degradation cost models, in which power dispatch is scheduled
to minimize the operational cost in the upper layer and power

fluctuations by RES forecast errors are minimized in the lower
layer. The proposed EMS is applied to a microgrid which
includes the PCC to the utility grid, a hybrid ESS, a RES
system and the aggregate load. Simulation studies successfully
demonstrate that different types of energy storages including
batteries and supercapacitors can be utilized at different layers
for multiple decision-making objectives. Scenarios incorporat-
ing pricing schemes, prediction horizon lengths and forecast
accuracies prove effectiveness of the proposed two-layer EMS
structure. In the future work, stochastic programming will
be considered to incorporate with the proposed EMS and
uncertainties in RES forecasting and RES generation output
will be modeled.
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